

The characteristics of DIALEAD[®] composites; Low Weight, High Stiffness, High Thermal Conductivity and Zero CTE are overcoming metals, and applied for many products, contributing saving energy and high productivity for sustainable world.

Aer	ospace	Industrial machine				
Low Weigh	nt • Zero CTE	<image/>				
Auton	notive	Civil Infrastructure				
Low Weight High	TC	Low Weight High Stiffness				
A courtesy of Crompton Te	chnology Group Ltd.					
Features	Application / Characteristics	Comparison				
Lightweight / High stiffness	 Low bending High-speed operation Vibration suppression Space saving 	 About 1/4 space gravity compared with iron About 2/3 of aluminum Stiffness and strength higher than iron Early attenuation of vibration possible 				
High thermal conductivity	 Lightweight heat sink Incombustibility Stable performance at high temperatures 	 Thermal conductivity equivalent to copper Higher thermal conductivity realized compared with common plastic materials. 				
Low coefficient of thermal expansion	Dimensional stabilityHigh precision parts	 Excels in thermal dimensional stability Coefficient of thermal expansion can be made to zero by composite design. 				

MITSUBISHI

CHEMICAL

GROUP

Materials Properties Comparison Table

Form	Material	Specific gravity	Tensile Elasticity	Flexural Modulus	Thermal expansion coefficient		Thermal Conductivity		Natural	Self-weight	Load
					X axis	Y axis	X axis	Y axis	Frequency	Deflection	deflection
		g/cm ³	GPa	GPa	10^-6/ [°] K	10^-6/ ["] K	W/ _m ,K	W/ _m ,K	Hz	mm	mm
Sheet Materials	DIALEAD Composite (105 GPa)	1.6	105	98	1.7	5.8	2.5	1.3	13.2	2.2	3.5
	DIALEAD Composite (250 GPa)	1.7	250	220	-0.9	7.7	73	1.2	19.7	1	1.5
	DIALEAD Composite (320 GPa)	1.7	320	260	-0.9	9	115	1.2	22.2	0.8	1.2
	DIALEAD Composite (Zero-CTE)	1.6	220	170	0	11	39	1	18.9	1.1	1.7
	DIALEAD C/C Composite	1.9	-	69	-1	-1	90	90	-	-	-
	SUS303	8	200	200	17.3	17.3	15	15	8	6	1.9
	Aluminum (1200H18)	2.7	69	69	23.6	23.6	220	220	8.2	5.8	5.3
	PPS-GF40%	1.6	8	12	-	-	-	-	-	-	-
Round Rod	DIALEAD Composite (high elasticity)	1.8	400	350	-	-	-	-	-	-	-
	DIALEAD Composite (high strength)	1.6	115	115	-	-	-	-	-	-	-

1.DIALEAD Composite values are calculated from epoxy resin.

2.*2CFRP: Carbon fiber reinforced plastics

3.*3Square and round pipe can also be manufactured using DIALEAD Composite.

•*These values represent typical values and calculated values. Actual values may vary.

Robot hand for liquid crystal glass

In addition to lightweight and high stiffness, the excellent vibration damping property realizes the improvement of productivity in the field of mechatronics.

A courtesy of YASKAWA Corp.

G8 case study

Material		Target	Steel	AI	PAN-RM CFRP	Pitch-HM CFRP
Modulus	[GPa]	-	206	69	100	320
Weight	[kg]	<100	370	125	75	80
Self deflection	[mm]	(8)	58	59	24	8
Load Deflection	[mm]	8	10	28	20	6

Steel:

× Motor power over

PAN-RM CFRP:

× Deflection

× Unstable transfer

× Big transfer gap

Pitch-HM CFRP:

O Light weight O Stable transfer

O Saving space

DIALEAD

Beams for transfer machines

High stiffness and weight reduction achieve vibration damping in a short period of time, improving tact time and productivity.

"Courtesy of Daimler Chrysler Aerospace, Dornier GmbH and Muller Weingarten AG"

Comparison

Vibration Damping Properties

Specimen: 200L x 15W x 1t (mm)

F: Calculation formula of Natural Frequency

- E: Young's Modulus
- I: Moment of Inertia
- P: Density
- A: Cross Section Area
- L: Beam Length

Pitch based CFRP Natural Frequency: 3 times of Steel Vibration Damping: 1/5 of steel

MITSUBISHI

CHEMICAL

GROUP

Non-Flammable Material

Base plate for pantographs on train

Light weight :

- Minimize bounding achieves excellent contact to overhead wire
- Double \rightarrow Single arm

Nonflammable :

No "spark" problem

Order Flow of Dialead Composite

DIALEAD Composite can be tailored to your applications and specifications.

Dicussion Design & Specification	Estimate	Orders	Delivery
Functional properties	Quantity/Schedule	Production Design	Lead Time : 3 to 12 weeks
FEM method	Form/Jigs	Mold Preparation	Depending on products
Chemical properties	Packaging specifications	Forming process	
Heat resistance		Processing and Assenbly	
Chemical resistance		Surface Treatment process	
Weather resistance		Inspection and Shipping	
Processing details			
Screws, Securement methods			
Foam Optimazation			

Design Support

- We meet customer needs by optimal design and material selection of composite.
- Prototyping / mass production
- We are a unique manufacturer that has a complete production system from carbon fiber to carbon fiber composite products
- We can offer quotations from prototyping to mass-produced items.

Prices / quality

• Thanks to ISO-based quality control and production structures, we offer quality, competitive composite products.